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STUDY CF A aASS CF NON-GAUSSIAN SIGNAL PROCSSING PROBIEMS

C. H. CHM

I. NOV N

" Gaussian assumticn has been a fundamental ane in most statistical signal

processing work. The assumoptio not only simplifies the analytical problems

involved but also matches the data characteristics in many cases because of

the law of large numbers. In a number of Navy sonar, radar and communications

system, signal processing algoritm must be developed without the Gaussian

assumpticn. The need for ncn-Gaussian signal processing

study was well described in a recent CNR SRO booklet. In our view the follow-

ing is a partial list of a broad spectrum of correlated problem areas in ncn-

Gaussian signal processing.

I. To investigate nan-linear adaptive procedures to assess their

detection performance against transient signals.

2. To investigate ncn-linear spectral analysis techniques such as

the Maximum Entrcpy Spectral Analysis (MESA) and the Maximum

Likelihood Method (HIM) to assess their detecticn performance

against transient signals.

3. To investigate techniques for weak signal extracticn in the pre-

sence of strong interferring signals. As a special case, potential

techniques for detecting broad-band (such as spread-spectrum) signals

can be explored including the analysis of changes in noise statistics

caused by pseudo-noise signals.

4. To explore the use of ncnparametric and rdbust statistical approaches

to devise algorithms which form well under different noise charac-

teristics. ., , ----
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5. TO study non-Gaussian models appropriate for reverberation or

reverberation-like noise found in shallow water environnt.

6. To examine the effects of non-Gaussian sources of impulsive noise

interference in tie-delay estimation, passive range estimation and

related underwater acoustic signal processing prcblems.

7. To enlarge the basic mathematical and statistical theory of non-

Gaussian stochastic processes applicable to both electromagnetic

and underwater sound environments

8. To characterise the ncn-Gaussian channels and interferences including

the multipath, dispersion, doppler effects and the optimal reception

under these circumstanes.

9. To examine the modifications required in the existing signal processing

system hardeare for non-Gaussian signal processing.

Cbviously good solutions to the above problem require expertise in several

areas such as communications and information theory, pattern recognition, wave

propagation, digital signal processing, image processing, and mathematical sta-

tistics, etc. As the prdblems are interrelated, they should be treated jointly

as nuch as possible. Problems 1 and 2 are examined in detail in this report.

For Problem 3, detection performance of spread-spectrum signals and the extraction

of weak signals in Gaussian noise have been considered even though further work is

much needed. For a general discussion of spread-spectun systems, see [1].

Adaptive digital filtering and Kalman filtering are suitable techniques for

extraction of broad-band non-Gaussian signals in noises. However analytical

work on the detection performance is not available. For Problem 4, some exist-

ing analytical work on rdust and ncnparametric detection of signals in impulsive
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noise and random interference WSee [2] and the references listed in the paper)

are useful. Mile general theoretical work based on general assumptions is

very important, special cases should be considered so that the detection pro-

cedures and perfomances developed will match more closely to specific impul-

sive noise and random interference conditions considered. Proper mathematical

modelling of impulsive noise, randam interference and channels is thus required,

whidh is the Problem 5 stated above.

Tine-delay eatimatin and passive ranging estimation from an array of

sensors are typical sonar signal processing problems (see e.g. [3] [4]). Pro-

blem 6 suggests that the non-Gaussian sources be taken into consideratin as

the existing work based on Gaussian assumption is quite restrictive. Problem 7

presents a nuter of mathematical and statistical topics to be explored. In

fact some theoretical work for Gaussian signals and Gaussian noises can be ex-

tended to non-Gaussian cases [5]. For example, consider the detection and esti-

mation of Gaussian signal in Gaussian noise. The conditional mean of the signal

is the best estimate for a variety of criteria. In the non-Gaussian case it is

the best linear estimate in the sense that mean-squared error is minimized. When

the signal is unknown but non-randam, the maximum likelihood estimate of the

signal is the same whether the noise is Gaussian or ncn-Gaussian. The test sta-

tistics for detecting nan-Gaussian signal in Gaussian noise is the same as that

for detecting Gaussian signal in Gaussian noise at small signal condition. Many

other mathematical properties remain to be examined.

Problem 8 has been well explored and reported in publications in cacmunica-

tions, wave propagation and other areas. Howver, much less amoumt of work has

been de for underwater transmission media. Although most signal proessing
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hardware designed for Gaussian signal processing can also be used for non-

Gaussian signal processing with ncn-cptimal performance, a modification of

the hardware is a worthwhile effort to provide significant perfon iz-

provement in many cases.

II. NaN-LUMAR ADAPTIVE DETBCICN PROCEMS

One fundaental problem with the non-Gaussian signal processing is that

the data is often nonstatinary. Adaptive procedures are needed for estima-

tin and detection of transient signals. Starting with the linear adaptive

detection procedures, we have extensively explored the feasibility of Adaptive

Digital Filtering and Kalman Adaptive Filtering [6] (7]. As the statistical

characteristics of the data change with time, filter parameters must be re-

adjusted at periodic intervals. This is considered as a piecewise linear

adaptive procedure. If the data statistics are

monitored continuously and the parameters are adjusted with each significant

change in data statistics, we will have a nonlinear adaptive procedure. Detec-

tion of the desired signal frat the filtered output can be performed by the

thresholding or correlation operation.

The Adaptive Digital Filter as shown in Figure 1 is a non-recursive digital

noise by itself without making Gaussian assumiption of the data. let N be the

order of the filter. The input-output relation of the filter is given by
N

ng O n rn-

where gm is the filter output, bn. m ii the filter oeafficient, an fn in the

filter output. Define the vectors
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Fig. lb The ncnrecursive Adaptive Filter.
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Bi, - bo, bm N,

and

m' m M - fm-N

Bquation (1) can be written as

= Bm' Fm Fm'Bm (2)

By using the Noisy Ieast-Mean-Square Algorithu [8], the filter coefficients

can be detennined from the equations

B =B +ve m F

m+.,l m m

em M M- (3)

gm B Fm

where v is a ccstant. After adjusting the paramters that include v, N, m,

and delay time, we can obtain the desired result with a greatly iproved signal-

to-noise ratio. Obviously the Adaptive Digital Filter wrks well with stationary

data. Parameter choice may require a lot of trial-and-error even though the

filterng procedure is f~irly pirple.

The signal model of the KA4zJn Aat Filter is cityn br

+ i Fk . + wk C41

where xk is the state variable, Wk is the system noise Vk i tha u~iwn

noise. Note that Gaussian assumption is not requir of Xk, vk d wks Given

a set of measurements Z k = 1, 2, -, N, w would like to estiMate xk c o 1,

2, - N, based on the state-spa= signal model given Iy a. C41. Sknua
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Zk - Vk, e have

Zk+1 = Xk+l + Vk+l = (k Xk + Wk) + Vk+1 (5)

Define an error criterion function,

Jk+l (+ _ Cz k xk + wk) _ Vk+l)2 = L2  (6)

If zk+1 and xk are known, we dtemine the values of wk, vk+l and fk iteratively

such that the state space model is optimum in the miniumum mean square error sense.

The method of Steepest Descent can be used in the cptinmizaticn process [9]. Cnce

the optinun values of wk' vk+I , and Fk are obtained, we can perform a one-step

predicticn of xk+l by using the equation

Xk+l = Fk Xk +w k  (7)

with w:k being the prediction error. The iterative procedure for the cptimiza-

tion at the ith iteration is given by

wk, i+ = wk,i + (2L)

v,+v,i+ 1 m Vk+l, i + ' (2L) (8)

Fk,i+l - Fki + 1(2Ux)

Here the increment A and wk, 0 , Vk+l,0, and Fk, 0 were given initially. In seismic

data processing, it is reasonable to assume that

F k, 0  wk,O = Vk+l,0 = 0

Furthermore, the initial state can be chosen as X0 = 0. These assumptions should

be appropriate for many non-Gaussian signal processing probles.

It will be of interest to examine some computer results with the seisnic

data which is non-Gaussian [7]. Both Adaptive Digital Filtering and Kabnan Adap-
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tive Filtering can perform well to extract inpulse-like signals from a corre-

lated non-Gaussian background noise. With properly selected parameters the

Adaptive Digital Filtering performs nearly the same as the Kalman Adaptive

Filtering. Figure 2 shows the results of Kalman Adaptive Filtering for three

channels of data with 960 data points each. This data segment represents a

section of complete file. The upper part of each photo is the original data

while the lower part is the filtered result. The extracted inpulses occur at

nearly the same time instants. The only parameters to be selected are AL

(the increment) and ITR (the number of iteration). An empirical relationship

between AL and ITR is established for each channel as shown in Figure 3. Each

point on the curves represents an optimal combination of AL and ITR. Although,

the curves are somewhat depending on the data especially on the backgroumd noise

level, they serve as a useful guideline for the Kalman Adaptive Filtering which

is almost nonparametric and is more robust than the Adaptive Digital Filtering.

If automatic detection is desired, a correlation or a thresholding operation

can be used. Theoretical detection performance, however, is not available.

As the data statistics are generallly nonstationary, the parameters of the

Adaptive Digital Filtering must be adjusted periodically. No such requinment

is needed in Kalman Adaptive Filtering as the final estimate for the previous

data point can be used as initial value for the current estimate. Another

method to incorporate the time-varying statistics in the Kalman filtering is to

use an "on-line" monitoring process to detect the significant change or "jump"

in the state and update the state vector accordingly [ 101. This nonlinear method

however is limited to Gaussian statistics. Based on the above discussion the

Kalman Adaptive Filtering method appears to be most suitable for non-Gaussian

signal processing. Experimental study has demonstrated good detection perform-

ance with the method.
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Fig. 2a
Channel 1 and adaptive
Kalman filtered data.
AL=0. 0038ITR=I0

Fig, 2b
Channel 2 and adaptive
Kalman filtered data.
AL=0.0028
ITIZ10

Fig. 2c
Channel 3 and adaptive
Kalman filtered data.
AL=0. 007
ITR-=-10

--I~i
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III. Nonlinear Spectral Analysis Tedniques

Both the maxinun entropy method (MEM) due to Burg and the maximum

likelihood method (MM) for power spectral analysis are considered as non-

linear high-resolution spectral analysis techniques suitable for processing

transient signals. They both bear a very close relationship to non-linear

adaptive array processing techniques [111. Furthermore the two methods are

very closely related [12]. Experimental results have demonstrated that MEM

is superior to MIM in spectral resolution (see e.g. [13]). Improvement over

the existing Burg's EM is possible by further reducing the final prediction

error with the Fletcher and Powell optimization method as proposed by Fougere

[14]. Other algorithms that provide more accurate spectral analysis than the

Burg's method have also been proposed (e.g. [15]). The maxinum entropy method

based on the Fougere s technique has been successfully implemented at the PDP

11/45 minicomputer here at the Southeastern Massachusetts University.

Given n data points xl, x2 , -, Xn, we define an (m + 1) - point pre-

diction error filter (1, gml' g2 -2 gm) such that the kth prediction

errors are

62k Z 7-k+lm-i '1,

i=0

where gn = 1 and elk and e2k are the forward and backward prediction errors,

respectively. The mean square prediction error, or mean error power, in both

time directions is

-12 n-m 2
Pm =0.5(n - m) - .2 n sk (10)s=l k=l
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If the prediction error filter of all orders 1, 2, -, m are gathered

in one matrix % (with the leading "1" suppressed), we may write

g21  g22
Gm: '(11)

gml gnQ --2 gni

The off-diagonal elents of Gm can be determined fran the diagonal

elements by using the Levinson recursion,

gjk =m gj-l,k + gjj gj-l,j-k (12)

The magnitude of the diagonal elements of G must be less than 1 in orderm

that the prediction error filter be minimum phase. In order to enforce

this condition, we can set

gj =U sin e. (13)

where e. is any real angle and U is a positive constant slightly less than

unity depending on the caxputer used. For the miniconputer a good choice

is U = 0.99999. Once the cxputation of the Burg's method is cxmpleted

the gradient of resulting Pm with respect to 6 is determined so that the

error minimization procedure can be started. After a number of iterations

the filter coefficients can be recumputed fran which the power spectrum is

determined. Although the original software devekrped by Fougere is not

suitable for the minicamputer, proper modification has made it possible to
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use this powerful techique in the mininctputer. Figure 4a shows one

cycle of sinewave of 1 Hz at saIpling rate of 20 sanples per second.

Figure 4b shows the Burg's spectrum for the 20 data points. There is

spectrum splitting and the spectral peak is shifted to 0.92Hz. The

Fougere tedhique after 10 iterations provides a correctly located peak

which is 53 times of the peak in the Burg's spectr (The vertical scales

are not the same in the two photos. Every division in the horizontal

scale is 0.5Hz).

It is inportant to note that very high resolution spectrum can be

obtained fram the miniccuputer using the method described above at only

slightly increased coaputational onplexity over the Burg's method. No

Gaussian assumption is made in the method. As the method is designed for

a small numtber of samples it is particularly suitable for analyzing the

spectrum of the transient signal.

With i=proved computer hardare the method may become useful for near zeal-

tine operations. Each spectral peak can have same physical meaning such as

in target detection in clutter. With proper trade-off in speed and accuracy

the method can prove to be very useful in non-Gaussian signal processing.

IV. Concluding Remarks

Although only two problem areas are considered in this report, non-

Gaussian signal processing is a challenging area which requires using know-

ledge in different disciplines to derive effective solutions. This area

also provides an opportunity to integrate or correlate many current signal

processing research activities which ae developed independently. Continued

and strong research effort is needed to pursue new directions and techniques

to solve some difficult analytical problem in non-Gaussian signal processing.



Fig, 4a
one cycle of sinewave
at 1 Hiz.

Fig. 4b
Burg' Ma£4xim=lD Entropi
Power Sp:octrmn.
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Fig. 4c
Foqre's Mxxinmn Entropy

Powr Spectrum.
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